Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Journal of Clinical Neurology ; : 534-540, 2021.
Article in English | WPRIM | ID: wpr-899152

ABSTRACT

Background@#and PurposePathogenic variants in B4GALNT1 have been reported to cause hereditary spastic paraplegia 26. This study has revealed that a novel compound heterozygous pathogenic variant in B4GALNT1 is associated with axonal Charcot-Marie-Tooth disease (CMT). @*Methods@#Whole-exome sequencing (WES) was used to identify the causative factors and characterize the clinical features of a Korean family with sensorimotor polyneuropathy. Functional assessment of the mutant genes was performed using a motor neuron cell line. @*Results@#The WES revealed a compound heterozygous pathogenic variant (c.128dupC and c.451G>A) in B4GALNT1 as the causative of the present patient, a 53-year-old male who presented with axonal sensorimotor polyneuropathy and cognitive impairment without spasticity. The electrodiagnostic study showed axonal sensorimotor polyneuropathy. B4GALNT1 was critical to the proliferation of motor neuron cells. The compensation assay revealed that the pathogenic variants might affect the enzymatic activity of B4GALNT1. @*Conclusions@#This study is the first to identify a case of autosomal recessive axonal CMT associated with a compound heterozygous pathogenic variant in B4GALNT1. This finding expands the clinical and genetic spectra of peripheral neuropathy.

2.
Journal of Clinical Neurology ; : 534-540, 2021.
Article in English | WPRIM | ID: wpr-891448

ABSTRACT

Background@#and PurposePathogenic variants in B4GALNT1 have been reported to cause hereditary spastic paraplegia 26. This study has revealed that a novel compound heterozygous pathogenic variant in B4GALNT1 is associated with axonal Charcot-Marie-Tooth disease (CMT). @*Methods@#Whole-exome sequencing (WES) was used to identify the causative factors and characterize the clinical features of a Korean family with sensorimotor polyneuropathy. Functional assessment of the mutant genes was performed using a motor neuron cell line. @*Results@#The WES revealed a compound heterozygous pathogenic variant (c.128dupC and c.451G>A) in B4GALNT1 as the causative of the present patient, a 53-year-old male who presented with axonal sensorimotor polyneuropathy and cognitive impairment without spasticity. The electrodiagnostic study showed axonal sensorimotor polyneuropathy. B4GALNT1 was critical to the proliferation of motor neuron cells. The compensation assay revealed that the pathogenic variants might affect the enzymatic activity of B4GALNT1. @*Conclusions@#This study is the first to identify a case of autosomal recessive axonal CMT associated with a compound heterozygous pathogenic variant in B4GALNT1. This finding expands the clinical and genetic spectra of peripheral neuropathy.

3.
Experimental Neurobiology ; : 177-188, 2020.
Article | WPRIM | ID: wpr-832462

ABSTRACT

Inherited peripheral neuropathy (IPN) is caused by heterogeneous genetic mutations in more than 100 genes. So far, several treatment options for IPN have been developed and clinically evaluated using small molecules. However, gene therapy-based therapeutic strategies have not been aggressively investigated, likely due to the complexities of inheritance in IPN. Indeed, because the majority of the causative mutations of IPN lead to gainof- function rather than loss-of-function, developing a therapeutic strategy is more difficult, especially considering gene therapy for genetic diseases began with the simple idea of replacing a defective gene with a functional copy. Recent advances in gene manipulation technology have brought novel approaches to gene therapy and its clinical application for IPN treatment. For example, in addition to the classically used gene replacement for mutant genes in recessively inherited IPN, other techniques including gene addition to modify the disease phenotype, modulations of target gene expression, and techniques to edit mutant genes have been developed and evaluated as potent therapeutic strategies for dominantly inherited IPN. In this review, the current status of gene therapy for IPN and future perspectives will be discussed.

4.
Experimental Neurobiology ; : 279-288, 2019.
Article in English | WPRIM | ID: wpr-739538

ABSTRACT

Charcot-Marie Tooth disease type 1A (CMT1A), the major type of CMT, is caused by duplication of peripheral myelin protein 22 (PMP22) gene whose overexpression causes structural and functional abnormalities in myelination. We investigated whether miRNA-mediated regulation of PMP22 expression could reduce the expression level of PMP22, thereby alleviating the demyelinating neuropathic phenotype of CMT1A. We found that several miRNAs were down-regulated in C22 mouse, a CMT1A mouse model. Among them, miR-381 could target 3′ untranslated region (3′UTR) of PMP22 in vitro based on Western botting and quantitative Real Time-PCR (qRT-PCR) results. In vivo efficacy of miR-381 was assessed by administration of LV-miR-381, an miR-381 expressing lentiviral vector, into the sciatic nerve of C22 mice by a single injection at postnatal day 6 (p6). Administration of LV-miR-381 reduced expression level of PMP22 along with elevated level of miR-381 in the sciatic nerve. Rotarod performance analysis revealed that locomotor coordination of LV-miR-381 administered C22 mice was significantly enhanced from 8 weeks post administration. Electrophysiologically, increased motor nerve conduction velocity was observed in treated mice. Histologically, toluidine blue staining and electron microscopy revealed that structural abnormalities of myelination were improved in sciatic nerves of LV-miR-381 treated mice. Therefore, delivery of miR-381 ameliorated the phenotype of peripheral neuropathy in CMT1A mouse model by down-regulating PMP22 expression. These data suggest that miRNA can be used as a potent therapeutic strategy to control diseases with copy number variations such as CMT1A.


Subject(s)
Animals , Mice , Demyelinating Diseases , In Vitro Techniques , MicroRNAs , Microscopy, Electron , Myelin Sheath , Neural Conduction , Peripheral Nervous System Diseases , Phenotype , Sciatic Nerve , Tolonium Chloride , Tooth Diseases , Untranslated Regions
5.
Journal of Clinical Neurology ; : 92-96, 2015.
Article in English | WPRIM | ID: wpr-179192

ABSTRACT

BACKGROUND: Mutations in the gene encoding periaxin (PRX) are known to cause autosomal recessive Dejerine-Sottas neuropathy (DSN) or Charcot-Marie-Tooth disease type 4F. However, there have been no reports describing Korean patients with these mutations. CASE REPORT: We examined a Korean DSN patient with an early-onset, slowly progressive, demyelinating neuropathy with prominent sensory involvement. Whole-exome sequencing and subsequent capillary sequencing revealed novel compound heterozygous nonsense mutations (p.R392X and p.R679X) in PRX. One mutation was transmitted from each of the patient's parents. No unaffected family member had both mutations, and the mutations were not found in healthy controls. CONCLUSIONS: We believe that these novel compound heterozygous nonsense mutations are the underlying cause of DSN. The clinical, electrophysiologic, and pathologic phenotypes in this family were similar to those described previously for patients with PRX mutations. We have identified the first PRX mutation in a Korean patient with DSN.


Subject(s)
Humans , Capillaries , Charcot-Marie-Tooth Disease , Codon, Nonsense , Hereditary Sensory and Motor Neuropathy , Parents , Peripheral Nerves , Phenotype
6.
Journal of Clinical Neurology ; : 183-187, 2015.
Article in English | WPRIM | ID: wpr-152498

ABSTRACT

BACKGROUND: We describe herein the application of whole exome sequencing (WES) for the molecular genetic diagnosis of a large Korean family with dominantly inherited myopathy. CASE REPORT: The affected individuals presented with slowly progressive proximal weakness and ankle contracture. They were initially diagnosed with limb-girdle muscular dystrophy (LGMD) based on clinical and pathologic features. However, WES and subsequent capillary sequencing identified a pathogenic splicing-site mutation (c.1056+1G>A) in COL6A1, which was previously reported to be an underlying cause of Bethlem myopathy. After identification of the genetic cause of the disease, careful neurologic examination revealed subtle contracture of the interphalangeal joint in the affected members, which is a characteristic sign of Bethlem myopathy. Therefore, we revised the original diagnosis from LGMD to Bethlem myopathy. CONCLUSIONS: This is the first report of identification of COL6A1-mediated Bethlem myopathy in Korea, and indicates the utility of WES for the diagnosis of muscular dystrophy.


Subject(s)
Humans , Ankle , Capillaries , Contracture , Diagnosis , Exome , Joints , Korea , Molecular Biology , Muscular Diseases , Muscular Dystrophies , Muscular Dystrophies, Limb-Girdle , Neurologic Examination
7.
Journal of Genetic Medicine ; : 25-30, 2015.
Article in English | WPRIM | ID: wpr-18089

ABSTRACT

PURPOSE: Charcot-Marie-Tooth disease (CMT) is a peripheral neuropathy mainly divided into CMT type 1 (CMT1) and CMT2 according to the phenotype and genotype. Although molecular pathologies for each genetic causative have not been revealed in CMT2, the correlation between cell death and accumulation of misfolded proteins in the endoplasmic reticulum (ER) of Schwann cells is well documented in CMT1. Establishment of in vitro models of ER stress-mediated Schwann cell death might be useful in developing drug-screening systems for the treatment of CMT1. MATERIALS AND METHODS: To develop high-throughput screening (HTS) systems for CMT1, we generated cell models using transient expression of mutant proteins and chemical induction. RESULTS: Overexpression of wild type and mutant peripheral myelin protein 22 (PMP22) induced ER stress. Similar results were obtained from mutant myelin protein zero (MPZ) proteins. Protein localization revealed that expressed mutant PMP22 and MPZ proteins accumulated in the ER of Schwann cells. Overexpression of wild type and L16P mutant PMP22 also reduced cell viability, implying protein accumulation-mediated ER stress causes cell death. To develop more stable screening systems, we mimicked the ER stress-mediated cell death in Schwann cells using ER stress inducing chemicals. Thapsigargin treatment caused cell death via ER stress in a dose dependent manner, which was measured by expression of ER stress markers. CONCLUSION: We have developed genetically and chemically induced ER stress models using Schwann cells. Application of these models to HTS systems might facilitate the elucidation of molecular pathology and development of therapeutic options for CMT1.


Subject(s)
Cell Death , Cell Survival , Charcot-Marie-Tooth Disease , Endoplasmic Reticulum , Endoplasmic Reticulum Stress , Genotype , Mass Screening , Mutant Proteins , Myelin P0 Protein , Myelin Sheath , Pathology, Molecular , Peripheral Nervous System Diseases , Phenotype , Schwann Cells , Thapsigargin
8.
Experimental Neurobiology ; : 169-172, 2014.
Article in English | WPRIM | ID: wpr-39648

ABSTRACT

Compared with biochemical information available about the diseases in the central nervous system, that for peripheral neuropathy is quite limited primarily due to the difficulties in obtaining samples. Characterization of the core pathology is a prerequisite to the development of personalized medicine for genetically heterogeneous diseases, such as hereditary motor and sensory neuropathy (HMSN). Here, we first documented the transcriptome profile of distal sural nerve obtained from HMSN patients. RNA-seq analysis revealed that over 12,000 genes are expressed in distal sural nerve. Among them 4,000 transcripts are novel and 10 fusion genes per sample were observed. Comparing dataset from whole exome sequencing revealed that over 1,500 transcriptional base modifications occur during transcription. These data implicate that dynamic alterations are generated when genetic information are transitioned in distal sural nerve. Although, we could not find significant alterations associated with HMSN, these data might provide crucial information about the pathophysiology of HMSN. Therefore, next step in the development of therapeutic strategy for HMSN might be unveiling biochemical and biophysical abnormalities derived from those potent variation.


Subject(s)
Humans , Central Nervous System , Dataset , Exome , Gene Expression Profiling , Hereditary Sensory and Motor Neuropathy , Pathology , Peripheral Nervous System Diseases , Sural Nerve , Transcriptome , Precision Medicine
9.
Journal of Clinical Neurology ; : 283-288, 2013.
Article in English | WPRIM | ID: wpr-55538

ABSTRACT

BACKGROUND: X-linked Charcot-Marie-Tooth disease type 5 (CMTX5) is caused by mutations in the gene encoding phosphoribosyl pyrophosphate synthetase I (PRPS1). There has been only one case report of CMTX5 patients. The aim of this study was to identify the causative gene in a family with CMTX with peripheral neuropathy and deafness. CASE REPORT: A Korean family with X-linked recessive CMT was enrolled. The age at the onset of hearing loss of the male proband was 5 months, and that of steppage gait was 6 years; he underwent cochlear surgery at the age of 12 years. In contrast to what was reported for the first patients with CMTX5, this patient did not exhibit optic atrophy. Furthermore, there was no cognitive impairment, respiratory dysfunction, or visual disturbance. Assessment of his family history revealed two male relatives with very similar clinical manifestations. Electrophysiological evaluations disclosed sensorineural hearing loss and peripheral neuropathy. Whole-exome sequencing identified a novel p.Ala121Gly (c.362C>G) PRPS1 mutation as the underlying genetic cause of the clinical phenotype. CONCLUSIONS: A novel mutation of PRPS1 was identified in a CMTX5 family in which the proband had a phenotype of peripheral neuropathy with early-onset hearing loss, but no optic atrophy. The findings of this study will expand the clinical spectrum of X-linked recessive CMT and will be useful for the molecular diagnosis of clinically heterogeneous peripheral neuropathies.


Subject(s)
Humans , Male , Charcot-Marie-Tooth Disease , Deafness , Diphosphates , Exome , Gait , Hearing Loss , Hearing Loss, Sensorineural , Optic Atrophy , Peripheral Nervous System Diseases , Phenotype , Ribose-Phosphate Pyrophosphokinase
10.
Experimental & Molecular Medicine ; : 151-160, 2009.
Article in English | WPRIM | ID: wpr-76615

ABSTRACT

Resveratrol has been reported to possess cancer preventive properties. In this study, we analyzed anti-tumor activity of a newly synthesized resveratrol analog, cis-3,4',5-trimethoxy-3'-hydroxystilbene (hereafter called 11b) towards breast and pancreatic cancer cell lines. 11b treatments reduced the proliferation of human pancreatic and breast cancer cells, arrested cells in the G2/M phase, and increased the percentage of cells in the subG1/G0 fraction. The 11b treatments also increased the total levels of mitotic checkpoint proteins such as BubR1, Aurora B, Cyclin B, and phosphorylated histone H3. Mechanistically, 11b blocks microtubule polymerization in vitro and it disturbed microtubule networks in both pancreatic and breast cancer cell lines. Computational modeling of the 11b-tubulin interaction indicates that the dimethoxyphenyl group of 11b can bind to the colchicine binding site of tubulin. Our studies show that the 11b treatment effects occur at lower concentrations than similar effects associated with resveratrol treatments and that microtubules may be the primary target for the observed effects of 11b. These studies suggest that 11b should be further examined as a potentially potent clinical chemotherapeutic agent for treating pancreatic and breast cancer patients.


Subject(s)
Humans , Antineoplastic Agents/pharmacology , Binding Sites , Breast Neoplasms , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/chemistry , Cyclin B/metabolism , G2 Phase/drug effects , Microtubules/drug effects , Models, Molecular , Pancreatic Neoplasms , Protein Serine-Threonine Kinases/metabolism , Stilbenes/pharmacology , Tubulin/metabolism
11.
Journal of Korean Medical Science ; : 733-738, 2006.
Article in English | WPRIM | ID: wpr-211998

ABSTRACT

Gaucher disease is caused by a deficiency of glucocerebrosidase. Patients with Gaucher disease are divided into three major phenotypes: chronic nonneuronopathic, acute neuronopathic, and chronic neuronopathic, based on symptoms of the nervous system, the severity of symptoms, and the age of disease onset. The characteristics of patients with acute neuronopathic- and chronic neuronopathic-type Gaucher disease include oculomotor abnormalities, bulbar signs, limb rigidity, seizures and occasional choreoathetoid movements, and neuronal loss. However, the mechanisms leading to the neurodegeneration of this disorder remain unknown. To investigate brain dysfunction in Gaucher disease, we studied the possible role of inflammation in neurodegeneration during development of Gaucher disease in a mouse model. Elevated levels of the proinflammatory cytokines, IL-1alpha, IL-1beta, IL-6, and TNF-alpha, were detected in the fetal brains of Gaucher mice. Moreover, the levels of secreted nitric oxide and reactive oxygen species in the brains of Gaucher mice were higher than in wild-type mice. Thus, accumulated glucocerebroside or glucosylsphingosine, caused by glucocerebrosidase deficiency, may mediate brain inflammation in the Gaucher mouse via the elevation of proinflammatory cytokines, nitric oxide, and reactive oxygen species.


Subject(s)
Mice , Animals , Up-Regulation/genetics , Tumor Necrosis Factor-alpha/genetics , Reverse Transcriptase Polymerase Chain Reaction , Reactive Oxygen Species/metabolism , RNA, Messenger/genetics , Nitric Oxide/metabolism , Microglia/cytology , Mice, Knockout , Mice, Inbred ICR , Mice, Inbred C57BL , Interleukin-6/genetics , Interleukin-1/genetics , Inflammation/immunology , Glucosylceramidase/genetics , Gaucher Disease/genetics , Cytokines/genetics , Cells, Cultured , Brain/embryology
12.
Experimental & Molecular Medicine ; : 348-356, 2006.
Article in English | WPRIM | ID: wpr-53156

ABSTRACT

Gaucher disease is a glycosphingolipid storage disease caused by deficiency of glucocerebrosidase, resulting in the accumulation of glucosylceramide in lysosomes. The neuronopathic forms of this disease are associated with neuronal loss and neurodegeneration. However, the pathophysiological mechanisms leading to prenatal and neonatal death remain uncharacterized. To investigate brain dysfunction in Gaucher disease, we studied the effects of neurotrophic factors during development in a mouse model of Gaucher disease. The expression of brain-derived neurotrophic factor and nerve growth factor was reduced in the cerebral cortex, brainstem, and cerebellum of Gaucher mice, compared with that in wild-type mice. Extracellular signal-regulated kinase (ERK) 1/2 expression was downregulated in neurons from Gaucher mice and correlated with a decreased number of neurons. These results suggest that a reduction in neurotrophic factors could be involved in neuronal loss in Gaucher disease.


Subject(s)
Mice , Animals , Signal Transduction , Neurons/metabolism , Nerve Growth Factors/metabolism , Models, Animal , Mice, Inbred C57BL , MAP Kinase Signaling System/physiology , Gaucher Disease/metabolism , Down-Regulation , Cells, Cultured , Cell Survival , Brain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL